Haplotype Assembly

Lesson of Bioinformatics Milano-Bicocca, 6/5/2015

Simone Zaccaria simone.zaccaria@disco.unimib.it

Overview

- Problem: introduction and motivation
- Formulations of the problem
- Approaches: FPT and approximation
- Proposal of Thesis

Genomes

Atlantic Salmon

• Genome = collection of chromosomes

Human

Pea plant

Diploid Organisms

Diploid = two sets of homologous chromosomes

Mendelian Laws

- For each chromosome there are 2 copies:
 - 1 inherited from the mother
 - 1 inherited from the father
- For now, ignore recombinations

Haplotype

- Haplotype = One copy of a chromosome
- Locus = genome position
- Haplotype is represented as a binary vector (0 major/1 minor allele)

Single Nucleotide Polymorphisms (SNPs)

- Each pair of homologous haplotypes exhibits differences in terms of Single Nucleotide Polymorphisms (SNPs)
- SNPs = Heterozygous positions

Single Nucleotide Polymorphisms (SNPs)

- Each pair of homologous haplotypes exhibits differences in terms of Single Nucleotide Polymorphisms (SNPs)
- SNPs = Heterozygous positions

Single Nucleotide Polymorphisms (SNPs)

- Each pair of homologous haplotypes exhibits differences in terms of Single Nucleotide Polymorphisms (SNPs)
- SNPs = Heterozygous positions

Motivations

- The haplotypes are of fundamental importance for many applications (Bronwing and Browning, Nature Reviews, 2011):
 - genetic variations / gene function
 - genetic variations / disease susceptibility
 - Genetic variations / drug resistance
 - Etc...
- A whole-experimental reconstruction of the haplotypes is not cost effective => Reconstruction of haplotypes from easier collectable data is necessary:
 - Computational reconstruction (i.e., Statistical approach)
 - Experimental reconstruction throught combinatorial approaches

Sequencing

- Read = A fragment of a single strand of DNA (i.e., chromosomes)
- Sequencing = collect reads from a copy of a chromosome

Pipeline

True complete haplotypes

Collection of reads

Aligned reads

Pipeline

The reads are bipartite in order to reconstruct the two haplotypes

Fragment Matrix

 \leftarrow SNP positions \rightarrow

					-					
	1	0	-	1	1	-	-	0	1	-
↑	-	1	0	0	0	-	-	1	-	1
reads	-	-	1	1	1	-	1	0	1	-
\downarrow	-	-	0	0	0	-	1	1	-	1
	-	-	-	0	0	0	1	1	0	1

- Each row corresponds to a read
- Each column correspond to a SNP position
- NOTICE: Homozygous positions may be ignored since they do not give information on the reconstruction/bipartition

- Conflict = different values on the same position
- The conflict may guide the reconstruction of the bipartition

Fragment Matrix

← SNP positions →

	1	0	-	1	1	-	-	0	1	-
↑ s	-	1	0	0	0	-	-	1	-	1
reads	-	-	1	1	1	-	1	0	1	-
→	-	-	0	0	0	-	1	1	-	1
	-	-	-	0	0	0	1	1	0	1

- Conflict = different values on the same position
- The conflict may guide the reconstruction of the bipartition

Errors

← SNP positions →

	1	0	-	1	1	-	-	0	1	-
↑ s	-	1	0	0	0	-	-	1	-	1
reads	-	-	1	0	1	-	1	0	1	-
↓	-	-	0	1	0	-	1	1	-	0
	-	-	-	0	0	0	1	1	0	1

- Sequencing or mapping errors => the reads cannot be unambigously bipartited
- The errors lead to an optimization problem

MFR and MSR

Minimum Fragment Removal (MFR)

1	0	-	1	1	-	-	0	1	-
-	1	0	0	0	-	-	1	-	1
-	-	1	0	1	-	1	0	1	-
-	-	0	1	0	-	1	1	-	0
-	-	-	0	0	0	1	1	0	1

Minimum SNP Removal (MSR)

1	0	-	1	1	-	-	0	1	-
-	1	0	0	0	-	-	1	-	1
-	-	1	0	1	-	1	0	1	-
-	-	0	1	0	-	1	1	-	0
-	-	-	0	0	0	1	1	0	1

Minimum Error Correction (MEC)

\leftarrow SNP	positions	\rightarrow
------------------	-----------	---------------

	1	0	-	1	1	-	-	0	1	-
↑	-	1	0	0	0	-	-	1	-	1
reads	-	-	1	0	1	-	1	0	1	-
↓ ↓	-	-	0	1	0	-	1	1	-	0
	-	-	-	0	0	0	1	1	0	1

Input: Fragment matrix

 Output: Minimum number of corrections that allow to unambiguously bipartite the reads

 A weighted variant (wMEC) assigns a weight to each element and minimize the total correcting weight => improve accuracy

Minimum Error Correction (MEC)

	← SNP positions →										
	1	0	-	1	1	-	-	0	1	-	
↑ s	-	1	0	0	0	-	-	1	-	1	
reads	-	-	1	0	1	-	1	0	1	-	
\downarrow	-	-	0	1	0	-	1	1	-	0	
	-	-	-	0	0	0	1	1	0	1	

• **Input**: Fragment matrix

 Output: Minimum number of corrections that allow to unambiguously bipartite the reads

 A weighted variant (wMEC) assigns a weight to each element and minimize the total correcting weight => improve accuracy

MEC Variants

Binary MEC (no holes, no gaps)

Gapless MEC (holes, no gaps)

Gap MEC (holes, gaps)

0	0	1	0	1	1	0	1	0	1
0	0	0	1	0	1	0	1	0	1
0	0	1	1	1	0	1	0	1	0

0	0	1	0	1	1	-	-	-	-
-	0	0	1	0	1	0	-	-	-
-	-	-	-	1	0	1	0	1	0

0	0	-	-	1	1	-	-	-	-
-	0	-	-	0	-	0	-	-	_
-	1	1	-	-	1	0	-	-	-

MEC Variants

Binary MEC (no holes, no gaps)

- Computational Complexity?
- Scheme of Approximation

Gapless MEC (holes, no gaps)

- NP-Hard
- Approximation?

Gap MEC (holes, gaps)

- NP-Hard
- APX-Hard (recently, not in APX)

^{*}Cilibrasi et al., The Complexity of the Single Individual SNP Haplotyping Problem, Algorithmica, 2007.

^{*}Bonizzoni et al., 2015

Approaches

Graph Model: Fragment Conflict Graph

	p_1	p ₂	p_3	p_4
f_1	0	1	-	-
f_2	-	0	1	1
f_3	-	-	0	1
f_4	1	-	-	0

Graph Model: Fragment Conflict Graph

	p_1	p ₂	p_3	p_4
f_1	0	1	-	-
f_2	-	0	1	0
f_3	-	-	0	1
f_4	1	-	-	0

Graph Model: SNP Conflict Graph

	p_1	p ₂	p_3	p_4
f_1	0	1	-	-
f_2	-	0	1	1
f_3	-	-	0	1
f_4	1	-	-	0

Graph Model: SNP Conflict Graph

	p_1	p ₂	p_3	p_4
f_1	0	1	-	-
f_2	-	0	1	0
f_3	-	-	0	1
f_4	1	-	-	0

 K-ploid Haplotype Assembly (fundamental for k-organisms or tumors, etc...)

Theoretical Focus:

- Computational Complexity
- Fixed-Parameter Tractability
- Approximation Complexity

Algorithmic Focus:

- Fixed-Parameter Tractable algorithm
- Approximation algorithm
- Euristichs

Experimental Focus:

multiallelic Minimum Error Correction (mMEC)

Theoretical Focus:

- Computational Complexity
- Fixed-Parameter Tractability
- Approximation Complexity

Algorithmic Focus:

- Fixed-Parameter Tractable algorithm
- Approximation algorithm
- Euristichs

- Design of an extension of the FPT algorithm presented in (Bonizzoni et al., 2015) exponential in the read length and following a dynamic programming approach:
 - Extension in order to manage weights and extend the algorithm in order to deal with gaps in the most general MEC
 - Introduce additional constraints in order to improve performance and bound the searching space
 - Implement the algorithm in a tool and experiment it on real and realistically simulated data, comparing with other current state-of-the-art approaches

 Implement the 2-APX algorithm presented in (Bonizzoni et al., 2015), implement the other approaches proposed in literature and compare their performance and accuracy results.

 Analyze the possibility to extend the 2-APX algorithm presented in (Bonizzoni et al, 2015) to the gapless variant of the MEC problem

- Carry on the study of the computational complexity,
 approximability, and tractability of the variants of MEC problem:
 - Computational complexity of Binary MEC
 - Approximability of Gapless MEC
 - FPT of the variants in the remaning parameters (MEC on the read length)
- Search for:
 - New models (es. graph models) for MEC problems
 - New heuristics for the MEC problem and compare it with the existing ones

Good Luck!

For information or question, correspondence to:

Simone Zaccaria

simone.zaccaria@disco.unimib.it

Website:

http://algolab.eu/simone-zaccaria/